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	Abstract
The signal level (S.L.) problem is the basic one in plant modification (P.M.) system design. If there is no limitation on the output of each plant section, then P.M. is easy. In a practical system, the designer must understand the effect of the local feedback loop PiHi on the signal level Ci+1 of the preceding stage. This paper presents a detailed analysis of this effect. The signal level variation ratio (SLVR) ρ is defined. Then the problem is simplified by dividing the frequency spectrum into distinct frequency ranges. A single simple factor │1+ L s(jω)│ , is shown to dominate ρ in each frequency region . A power increase tolerance level is assigned to any P.M. design and it is finally shown how to relate ρ and │1+ L s(jω)│ to this tolerance level.
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I.  Definitions of Signal Level Variation Ratio (SLVR) and ρ
SLVR is defined with respect to a single loop design for the same plant. Let P = { P } be the plant set due to uncertainty.

Single loop system (see Figure 1 for notation)

The maximum output signal level is

│Cs(jω)│maxP  = │RFs(jω)││L s(jω) / {1+ L s(jω)}│maxP  (1)
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Fig. 1  Canonic 2 section plant, single loop design

and the maximum signal level at the output of P2 is 

│C2s(jω)│maxP  =│RFs(jω)││L s(jω) / { P1(jω)﹝1+ L s(jω)﹞}│maxP    (2)
The ratio
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P is dropped henceforth, i.e., maximization and minimization is always over P unless otherwise specified.

P.M. 2-loop system (see Figure 2 for notation)

	[image: image3.png]



Fig.2. The P.M. 2-loop system structure
Similarly,

[image: image4.png]e
0
.
Lo o
gl 2
\

g

o




[image: image5.png]PRI

) s _ 140903 09+ 141G D

C ) e T e





                                           (4)                                                                                 

The signal level variation ratio (SLVR) ρ is defined to be 

│C22(jω)│max  / │C2s(jω)│max
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  (5)
Nominal loop functions
In this and later sections, frequent references are made to ”nominal” loop functions, which are the loop functions at some specific P ε P  = {pi}. It is convenient to choose the nominal P such that │p│min = min P {│pi│}. Often, one specific parameter combination gives │p│min  for all ω , e.g. if  p = k/s(s+a) , k ε [k1,k2] and a ε [a 1, a 2] , │p│min =│k1/s+(s+ a 2)│jω for all ω . But this may not be so for more complex plant functions. In such a case we shall use at each ω , that parameter combination which gives│p│min at that ω value. Note that at high frequencies pi →ki/sei  so │pi│min corresponds to Kimin.
II.  Division of the Frequency Spectrum
One starts with a single-loop design Ls for the problem of Figure 1. And the frequency range is divided into 5 distinct parts, as in Figure 3. Let the high-frequency (denoted by hf) uncertainty of P1 be M1 db (20 in our example ) and that of P2 be M2 db (also 20 db in this example ).
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Fig.3. Division of the Frequency Spectrum
(1)  The very low frequency range:

R1= [0, ω1] is that in which│Ls (jω)│
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25db over the entire plant parameter space. In Figure 3, ω1 = 0.08, because Ls there is│Ls│min .  In this range in the multiple loop design (cascaded no modification, or P.M.) the inner loops are not used to help the outer loop L0, i.e. in R1 , Lsn
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 Lon , where  Lsn and  Lon designate the nominal loop transmissions.

(2)  Middle frequency range:

R2 = (ω1, ω2]  defined by  25 db > │Lsn (jω)│ 
[image: image10.wmf]³

 - M2 db where M2 is the hf uncertainty of P2, where is 20 db in this example. In Figure 3, ω2 = 8 .
(3)  High frequency range 1:

R3 = (ω2, ω3] defined by - M2 db >│Lsn (jω) │
[image: image11.wmf]³

 -( M1+M2)db where ( M1+M2 ) is the hf uncertainty of  P = P1P2 . In Figure 3 , ω3 = 44 .

	(4)  High frequency range 2:

R4 = (ω3, ω4] where ω4 = 10 ω3. In Figure 3, ω4 = 440 .

(5)  The very high frequency range:

R5 = (ω4,
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It is helpful , for interpretation of SLVR , to point out here orders of magnitude of the P. M. inner loop Lin ( nominal value at│p│min), before going into detail. Two numerical examples2 of typical P.M. 2-loop designs are given in Figure 4. In R1,│Lin│is very small in general, though the actural values depend on the specific problem. Thus, in Figure 4 , Design A has│Lin ( jω)│
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 -30 db and in Design B, │Lin ( jω)│
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 -22 db for ω
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. In R2 , the SLVR is allowed to increase and │Lin│becomes bigger. In Figure 4, -30 db<│Lin ( jω)│
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 -7db in Design A and -20db <│Lin ( jω)│
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 -5db in Design B, for ω
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Fig.4. Division of the Frequency Spectrum and corresponding
 Lin, Lon and Lsn of design examples

In R3 ,Lin is used to cope with the parameter uncertainty of P1 , so│Lin ( jω)│cannot be very small and actually tends ~ 0 db.  In Figure 4,  -7 db <│Lin ( jω)│
[image: image20.wmf]£

 -2.5 db in Design A and -5db <│Lin ( jω)│
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 -2db in Design B, for ω
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. Note that here │Lin ( jω)│ is much bigger than the corresponding│Lon ( jω)│and│Lsn ( jω)│ ─ see Figure 4.  In R4 , in which Lon design was based on no uncertainty in P1e, is nevertheless satisfactory for large P1e uncertainty, so│Lin│can be small.  In Figure 4 , -6 db > │Lin ( jω)│
[image: image23.wmf]³

 -50 db in Design A and -4 db >│Lin ( jω)│
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 -44db in Design B , for ω
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. And the last range R5 is the very high frequency range where both Lsn, Lon, Lin are very small. In Figure 4,│Lsn ( jω)│<-84 db ; │Lon ( jω)│<-120 db ,│Lin ( jω)│<-50 db in Design A and│Lon ( jω)│<-130 db, │Lin ( jω)│<-54 db in Design B.

III.  Relation between SLVR 
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 and│1+Lin│
The precise expression for 
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 in (5) is too complex for practical engineering synthesis. But good simplifying approximations are possible.

In Figures 1, 2, 
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In a fair comparison of the two designs, the maximum outputs over 
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 should be the same, i.e. |
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The relation between ￡ and 
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 gives the conventional loci of constant ￡ magnitude on the Nichol’s chart. So the relation of 
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 with respect to Li is the reversed Nichol’s plot, obtained by changing the sign of constant magnitude curves ( see Figure 5 ). These loci will be very useful in P.M. design.
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Fig.5. Loci of the constant 
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The simplification of ( 5 ) for SLVR 
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 , follows.

1.   R1=
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In this range , the single loop, unmodified cascade and P.M. designs are almost identical, so 
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 ( see Figures 4, 6 ). Thus, the inner loop Li is not used in R1 to help the outer loop , and it is there fore small with typical maximum (over 
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) values of the nominal Lin ( chosen as the smallest over 
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Where 
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 = {p1}, due to uncertainty in p1 parameters,
Similarly 
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With this (5) becomes
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	Fig.6 Typical Lsn and  Lon (Design A)
Consider the error introduced in letting 
[image: image60.wmf]1

~

1

d

. For example, let Lsn have its minimum value at 25 db 
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 with gain uncertainty of P1, 1 to 10. │Ls/(1+Ls)│= │j17.8/(j+17.8)│~ 0.99842 at │P1│min
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Fig.7 A Typical inner loop (Design A)
So the percentage error in canceling the first factor of (10) is ( 0.99998-0.99842 ) / 0.99842 = 0.157%. Similarly, the second factor in (10) has the same error due to cancellation. But note that in the cancellation, the second factor in (10) has an error opposite to that of the first factor.  So due to both cancellation, the total maximum error is << 0.157%. 

So in (11), we get
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form Figure 5 as follows. Recall that in R1, in the P.M. design philosophy, the inner loop is not used to help the outer loop, so 
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  = |20.8124-20.5635| = 0.2488db.  Note that 
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 depends on the position of template Li. Thus, if A in Fig. 8 is at -30db
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= 0.058 db and when A is at -10 db
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= 0.382 db. Our design philosophy is to make Li as small as possible in R1, in order that the minimum signal level of C22 be very closely equal to that of C2s. This is because the control signal level is highest in this low frequency range, so that even small percent changes could lead to large absolute differences. So   
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, because R1 is the low frequency range. Even if the system is type 1, it is the outer loop which is preferably made type 1, as the primary function of the inner loop, Li, is to help relieve the burden on the outer loop in the high frequency range. But even if 
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 is still not great, e.g. in Figure8, 
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Fig.8 Template of inner loop in Nichol’s chart in R1
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Note again that Lin is the nominal value of Li defined as the minimum of 
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At worst, in (14), a very slight adjustment can be made in 
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 for two numerical examples are shown in Figure 9.

The conclusion is that in R1, the SLVR 
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Recall R2 is the middle 
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 range in which the signal level is allowed to increase, 
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>1, and with larger 
[image: image119.wmf]in

L

 than in R1.

[image: image120.png]



Fig.9  Nature of 
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From section III, R2 = 
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Fig.10a Typical Ls and template of Ls at R2

extends above the horizontal 0 db line, in the Nichol’s chart of  Figure 10a. 
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Fig.10b Typical Lo and template of Lo at R2
Similarly, in P.M. 2-loop system, Lo = GPleP2 at 
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IV.  Conclusions

Concluding the above discussions, 
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 in R1 and R2, where the control signal is important. So the design philosophy is conservative.
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< 1 in the latter part of R4 and 
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=1 in R5. The latter are the high frequency ranges, where the signal level is not important and we concentrate on the reduction of the sensor noise effect.
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